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Nonlinear Schrödinger equation and superfluid hydrodynamics
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Abstract. We show that it is possible to generalize the Gross-Pitaevskii equation describing superfluidity in
order to recover the two-fluid model, in the hydrodynamic limit, when the deviations from the equilibrium
state are of long wavelength. When short distances are relevant, it is possible to keep trace of the purely
quantum, non-hydrodynamic term of the Gross-Pitaevskii equation, so that the Hills-Roberts model, which
describes the healing phenomenon, is finally obtained.

PACS. 67.40.Bz Phenomenology and two-fluid models

1 Introduction

Recently, there has been much interest in the investigation
of superfluid properties based on the nonlinear Schrödinger
equation (see below Eq. (2)), such as the excitation spec-
trum [1], sound scattering by quantum vortices [2], vor-
tex nucleation [3] and liquid/vapour coexistence [4]. The
nonlinear Schrödinger equation is a model of the weakly
interacting Bose gas that has been proposed long times
ago by Gross [5] and Pitaevskii [6]. In this model (here-
after G-P model), the temperature is set equal to zero,
and the weakness of the interactions ensures that almost
all helium atoms are Bose-condensed in the state of lowest
energy. They all are in the same quantum state, so that
a macroscopic wave-function appears very naturally; like-
wise, the superfluid velocity field is given by considering
the probability flow of this wave function, and is propor-
tional to the gradient of its phase.

Helium II is a dense fluid of strongly interacting bosons,
so that the relevance of the G-P model to the description
of superfluid helium is questionable, but this simplified
model keeps the essential characteristics of superfluid dy-
namics. Moreover, there are now experimental realization
of Bose condensed gas [7], which reinforces the relevance
of the model. It is also possible, in the framework of the
G-P model, to give a precise meaning to the concept of
the healing length, the typical length scale on which the
superfluid density increases from zero at the wall to its
value in the bulk of the fluid. The requirement of a null
superfluid density at a solid wall is necessary to exclude
discontinuities in the superfluid mass flux, in agreement
with some strong physical arguments (see [8,9] for a full
discussion).

However, the Gross-Pitaevskii model is valid at zero
temperature only, so that the normal component of the
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fluid, which behaves like an ordinary viscous fluid, is com-
pletely absent from the theory. The very peculiar proper-
ties of superfluid helium II are deeply related to the Bose
condensation, which imply that a macroscopic part of the
fluid is in the same quantum state. As shown by Feyn-
mann [8], the symmetry properties of the ground state
wave function, and the dense packing of the liquid both
imply that at low temperature the low-energy excitations
of the fluid should be phonons. This makes the link with
the Landau [9] picture of the normal fluid as a gas of non-
interacting quasiparticles, which are phonons at low tem-
perature1. This is the microscopic basis for the two-fluid
model of Landau [10] and Khalatnikov [11], who derived
phenomenological equations for a mixture of normal fluid
and superfluid, which behaves like an irrotational ideal
fluid. Those equations are supposed to be valid at any
temperature, possibly with the exception of the vicinity
of the λ-point [12]. They do not describe the healing phe-
nomenon, and they have been generalized in this sense by
Hills and Roberts [13].

At zero temperature, the G-P coincide with the two-
fluid model up to a term that contains derivatives of the
superfluid density, and which is equal to the correction
of Hills and Roberts. It is thus very tempting to general-
ize the equation of Gross and Pitaevskii, to include both
the degrees of freedom describing the normal part of the
fluid while keeping the non-hydrodynamic term responsi-
ble for healing near solid boundaries. The phenomenon of
superfluidity is due to the macroscopic size of the num-
ber of particles in the condensate, which is the ground
state of the fluid; the particles in the excited states of the
gas form the depletion. In the G-P theory, there are only

1 At higher temperature, another type of quasiparticles in-
tervene, the rotons. It seems dangerous to extrapolate our work
near the λ-point, but the rotons contribution to the thermo-
dynamic functions is in principle easy to introduce in our cal-
culations.
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weak interactions between the particles, and the deple-
tion is completely neglected. A possible generalization of
the G-P equation consists in taking into account the de-
pletion at “order one”, the main difficulty being to give
a precise meaning to a development in power of the de-
pletion. In previous attempts [14,15], the global gauge in-
variance of the G-P equation was used to introduce new
degrees of freedom with the requirement of local gauge in-
variance, formally achieved by using the minimal coupling
as in electrodynamic theory; the supplementary terms in-
troduced in the equations were interpreted as properties
of the depletion. In so doing, one does not obtain the two-
fluid description of superfluidity; it is not surprising be-
cause the depletion cannot be identified with the normal
component of the fluid, neither the condensate with its
superfluid component. A more serious problem of those
models is that they do not respect Galilean invariance.

Our aim is much more modest; we show that the mini-
mal coupling technique, yet without any attempt to realize
local gauge invariance, is sufficient to derive the two-fluid
equations from the G-P model, in the hydrodynamic limit,
and also to describe the healing phenomenon when shorter
distances are relevant. We briefly review the G-P equation
and the two-fluid model in Section 2. In Section 3, we de-
rive the two-fluid model from the G-P equation. The Hills-
Roberts theory is briefly reviewed in Section 4, where we
show how to derive it from the G-P model. A summary
and our conclusions are given in Section 5.

2 The Gross-Pitaevskii equation and the
two-fluid model

In this section, we review briefly for completeness and fur-
ther reference those two well-known theories of superflu-
idity.

The G-P equation [5,6] is obtained from a Hartree-
Fock approach of the weakly interacting Bose gas. As-
suming pair interaction U(x − x′) between the particles
at positions x and x′, one finds that the condensate wave
function Ψ(x, t) satisfies the equation:

i~∂tΨ =−
~2

2m
∇2Ψ − µ∞Ψ + Ψ(x, t)

×

∫
|Ψ(x′, t)|2U(x− x′)d3x′. (1)

This equation follows from the minimization of the energy
of the fluid rather than its free energy, and in this respect
it is valid only at absolute zero. If we suppose that the
potential is of very short range and can be approximated
by U0δ(x − x′), and use the fact that µ∞, the chemical
potential at infinity2, taken at zero temperature, is equal
to (N0/V0)U0, where N0 =

∫
|Ψ |2d3x is the number of

2 In so doing, we implicitly assume that the fluid is at rest
at infinity, otherwise µ∞ should depend on the fluid velocity
at infinity.

particles in the condensate and V0 the total volume oc-
cupied by the fluid, we find that Ψ satisfy the Nonlinear
Schrödinger Equation (NLS):

i∂tΨ = −
1

2
∇2Ψ + |Ψ |2Ψ − Ψ. (2)

Here the mean density ρ0 ≡ N0/V0 is taken as unity, the
unit length is ~/

√
ρ0mU0 and the unit time is ~/(ρ0U0).

From now on, we will use dimensionless variables.
Setting Ψ(x, t) ≡

√
ρ(x, t)eiθ(x,t), and separating the

real and imaginary part in (2), we get

∂tρ+∇ · ρv = 0, (3a)

∂tv +∇
v2

2
+

1

ρ
∇
ρ2

2
= −∇

(
(∇ρ)2

8ρ2
−
∇2ρ

4ρ

)
, (3b)

where v ≡ ∇θ. Except for the high-derivative terms on
the right-hand side of (3b), which can be discarded in
the hydrodynamic regime, the system (3) is identical to
the Euler equations for an irrotational ideal fluid with
a pressure p(ρ) ≡ ρ2/2. The pressure depend only on ρ
because the fluid is taken at absolute zero.

On the other hand, if we neglect all dissipative pro-
cesses, the equations of the two-fluid model of superfluid-
ity are [10]:

∂tρ+∇ · J = 0, (4a)

∂tvs +∇

(
v2

s

2
+ µ

)
= 0, (4b)

∂tS +∇ · Svn = 0, (4c)

∂tJ
i + ∂jΠij = 0, (4d)

where the momentum density J and the stress tensor Πij

are given by

J ≡ ρnvn + ρsVs , (5a)

Πij ≡ ρnv
i
nv
j
n + ρsv

i
sv
j
s + pδij . (5b)

Here ρn (resp. ρs) is the density of the normal (resp. super-
fluid) part of the fluid, vn (resp. vs) is the velocity of the
normal (resp. superfluid) part of the fluid and ρ ≡ ρn + ρs

is the density of the whole fluid. The following thermo-
dynamic functions are also introduced: µ is the chemical
potential of the fluid, S its entropy per unit volume and
p its local pressure. Those two sets of equations, ( 4, 5 ),
imply the conservation of energy

∂tE +∇ ·Q = 0, (6a)

where E is the energy density

E =
1

2
ρv2

s + ρnvs · (vn − vs) +E0, (6b)

and Q the energy flux

Q =

(
µ+

1

2
v2

s

)
J + TSvn + ρnvn(v2

n − vn · vs). (6c)
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Here T is the temperature and E0 the energy density in
the reference frame where the velocity of the superfluid
motion of the given fluid element is zero; the system of
equations (4) must be supplemented by the thermody-
namic identities

dE0 = µdρ+ TdS + (vn − vs) · d[ρn(vn − vs)], (7a)

E0 = −p+ TS + µρ+ ρn(vn − vs)
2. (7b)

At zero temperature, there is no normal fluid and the en-
tropy is zero, so that (4c) is identically satisfied. A sim-
plification occurs in (5) when one inserts ρn = 0, and
(7) gives dp = ρdµ in the zero temperature limit, so that
(4b, 4d) are identical in this limit. The system (4) thus re-
duces to (4a, 4b) and, if we assume ρ = ρs and vs = ∇θ, is
formally identical with the the G-P equation (3) in the hy-
drodynamic limit, that is when the high-derivative terms
on the right-hand side of (3b) are discarded. It is natural
to identify the irrotational velocity field vs with v = ∇θ.
On the contrary, the condensate density |Ψ |2 must not be
confused with the density of the superfluid part of the
Bose gas, ρs. Indeed at absolute zero the whole fluid is su-
perfluid, but if there are interactions between the particles
they cannot be all in the condensate. However, the G-P
equation is valid in the limit where the depletion repre-
sents a negligible fraction of the fluid. It is thus consistent
to identify the condensate density with that of the su-
perfluid in the G-P equation, but this approximation is
legitimate for the weakly interacting Bose gas only, and
not for real helium II in which the condensate represents
only 10% of the whole fluid [16].

The subject of the next section is to generalize the G-
P equation to finite temperature in order to recover the
two-fluid model in the hydrodynamic limit.

3 Derivation of the two-fluid model

The two-fluid model is a phenomenological theory in the
following sense: It is assumed that the relevant thermody-
namic functions, ρn, ρ, µ, T , S and p, are known functions
of a couple of independent thermodynamic variables like,
e.g., (p, T ) or (ρ, S); this implies the knowledge of both
the equation of state for the fluid, and the evolution of
the normal fluid density with the thermodynamic state of
the fluid. In a superfluid, which can sustain macroscopic
mass flow in a state of thermodynamic equilibrium, the
relative velocity w of the two fluids is a third independent
thermodynamic variable; the dependence on w is given
by requiring Galilean covariance at low relative velocity,
whereas at higher velocity it is necessary to know the de-
pendence of ρn on w. Otherwise, the superfluid velocity
vs is irrotational, so that it is fixed by one scalar function
Φ such that vs = ∇Φ. In that sense, the system (4) is a
complete system of 6 equations for the 6 unknowns vn, Φ
and any two thermodynamic variables.

There is no phenomenology in the G-P equation, which
leads to explicit expressions for the dependence of µ and p
on ρ, the only remaining thermodynamic variable at zero

temperature. Our aim is to generalize the theory in or-
der to recover the two-fluid model, and we will proceed
in a phenomenological way, assuming the relevant ther-
modynamic functions at finite temperature to be known.
The G-P equation describes the evolution of the density
ρ and the superfluid velocity potential θ, so that four new
degrees of freedom are necessary if one wants to get the
complete set of equations of the two-fluid model. It is clear
that we must introduce the normal fluid velocity vn, which
means three suplementary degrees of freedom. As we just
said, ρ is the natural thermodynamic variable of the G-P
equation. It is thus appropriate to take as the other in-
dependent thermodynamic variable the entropy per unit
volume S, thus completing the set of new degrees of free-
dom.

Equation (2) can be derived from the Lagrangian den-
sity

L0(Ψ, Ψ∗) =
i

2
[Ψ(∂tΨ)∗ − Ψ∗(∂tΨ)]

+
|∇Ψ |2

2
+

1

2
|Ψ |4 − |Ψ |2, (8)

which is invariant under global gauge transformations

Ψ −→ Ψ ′ = Ψeiα,

Ψ∗ −→ Ψ ′∗ = Ψ∗e−iα, (9)

where α is a real constant, and Ψ∗ means the complex con-
jugate of Ψ . One (formal) way to include a scalar field φ
and a vector field A is to require local gauge invariance of
the Lagrangian density (8) under time and space depen-
dent gauge transformations α(x, t); this is accomplished
with the replacement of the derivatives by

∂t −→ ∂t + iφ, ∇ −→ ∇− iA, (10)

assuming that the fields are transformed under the gauge
transformation like

φ −→ φ′ = φ− ∂tα, A −→ A′ = A+∇α. (11)

Chela-Flores [15] considered only space dependent gau-
ge transformations α(x), and thus only the vector field,
which he identified with the velocity field of the normal
part of the fluid. As we shall see, this is incorrect and fur-
ther reflexion is necessary to understand the significance
of the vector and scalar fields to be introduced.

First, the identification of the vector field A with the
velocity field of the normal part of the fluid violates Gali-
lean invariance of the model. As is well known, the two-
fluid equations can be derived by requiring that they must
be invariant if we change from the Galilean coordinate
systemK to another Galilean system K ′ moving relatively
to K at constant velocity V . Thus the action of a Galilean
boost {

x′ = x+ V t

t′ = t,{
∇′ = ∇

∂t′ = ∂t − V · ∇,
(12)
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leaves the system (4) invariant. On the other hand, equa-
tion (2) is also invariant under a Galilean boost if the wave
function is transformed like

Ψ(x, t) = Ψ ′(x′, t′)exp[i(−V x′ + (V 2/2)t′)], (13)

so that the phase gradient actually behaves like a veloc-
ity: ∇′θ′ = ∇θ + V . Thus any modification of (2) must
respect Galilean invariance in order to be consistent. The
vector and scalar fields should behave under changes of
Galilean coordinate systems like, respectively, the vector
and scalar potential of electromagnetism, or equivalently
like the gradient and the time derivative (see (12)){

A′ = A

φ′ = φ− V · A.
(14)

We thus see that A is invariant, and cannot be iden-
tified with a velocity. In the following, we will maintain
Galilean invariance, and a convenient way to do that is
to introduce the fields A and φ in the same manner as
Chela-Flores did, but of course with a different physical
interpretation. We will also see that consideration of lo-
cal gauge invariance is neither possible nor necessary; we
just need two fields that behave under Galilean boosts like
in equation (14), and introduce them in the Lagrangian
density (8) with the replacement rules (10) in order to
preserve the invariance of NLS under Galilean transfor-
mations.

An interpretation of the vector field A, consistent with
(14), and introducing the required new degrees of freedom
in (8) is

A ≡ χ(∇θ − vn), (15)

where vn is a vector field corresponding to the velocity
field of the normal part of the fluid, and χ is a Galilean
invariant scalar field. The simplest approach consistent
with the considerations of the beginning of this section
is to assume that χ is a function of the density and the
entropy (per unit volume) only. For the time being, we do
not make any assumption concerning the scalar field φ, so
that most generally we suppose φ = φ(ρ, θ, vn, S).

We thus introduce four new degrees of freedom, S and
vn, and our first task is to find the relationship between
χ and ρn. When we insert in (8) the fields A and φ, ac-
cording to the transformation law (10), we obtain the new
Lagrangian density

L1 (Ψ, Ψ∗, S, vn) = L0(Ψ, Ψ∗) + |Ψ |2φ

+
i

2
(Ψ∗∇Ψ − Ψ∇Ψ∗) ·A+

1

2
A2|Ψ |2. (16)

Now, if we use the definition (15) of A, using ∇θ =
(Ψ∗∇Ψ − Ψ∇Ψ∗)/(2|Ψ |2), the result is a complicated ex-
pression depending on Ψ , Ψ∗, and their gradients; it is
much more convenient to use the variables ρ, θ, χ and vn,

making the change of variables Ψ =
√
ρeiθ directly in L1

L1 [ρ, χ(ρ, S), θ, vn] = ρ∂tθ +
ρ2

2
− ρ+

ρ

2
(∇θ)2 +

(∇ρ)2

8ρ︸ ︷︷ ︸
≡L0

+
ρ

2
(χ2 − 2χ)(∇θ)2 + ρχ(1− χ)vn · ∇θ

+
ρ

2
χ2v2

n + ρφ(ρ, S,∇θ, vn). (17)

The underbraced term is just the Lagrangian density
L0 expressed in the variables (ρ, θ). The zero temperature
limit is formally obtained when χ, φ and vn all goes to
zero; it is thus obvious that in this limit L1 is identical
to L0. The high-derivative term (∇ρ)2/(8ρ) is negligible
in the hydrodynamic limit, and irrelevant in this section,
so that we will suppress it henceforward. We postpone a
discussion including the effect of this non-hydrodynamic
term to the next section.

From (17), we obtain the Lagrange equation for θ

∂tρ+∇ ·

[
ρ(1− χ)2∇θ + ρχ(1− χ)vn + ρ

∂φ

∂∇θ

]
= 0,

(18)

which should clearly be associated with mass conservation
in the two-fluid model. This is fulfiled assuming

∂φ/∂∇θ = χvn, (19)

and defining

ρn = ρχ(ρ, S)[2− χ(ρ, S)]

and

ρs = ρ[1− χ(ρ, S)]2, (20)

so that (18) becomes

∂tρ+∇ ·
[
ρ(1− χ)2∇θ + ρχ(2− χ)vn

]
= 0, (21)

which is now formally identical to equation (4a). In order
to preserve the Galilean invariance of the theory, φ must
evolve under a Galilean transform as required by (14); if
we also require that it fulfils the condition (19), its only
possible structure is

φ = ϕ(ρ, S) + χvn · (∇θ − vn)

= ϕ+ vn ·A, (22)

where ϕ is a Galilean invariant scalar function, which may
depend on ρ and S.

It is now easy to see that the requirement of local gauge
invariance becomes inapropriate. The total density ρ is un-
changed by any gauge transform, and physically the nor-
mal and superfluid density cannot change, so that χ must
be invariant too. Under a local gauge transform Ψ −→
Ψ ′ = Ψeiα(x,t), the superfluid velocity become ∇(θ+α); in
order to ensure the behaviour of A required by local gauge
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invariance (11), with A given by (15), the normal fluid ve-
locity should become vn −→ v′n = vn + [(χ − 1)/χ]∇α.
Whatever the value of χ, the two velocities do not behave
in the same manner under a local gauge transform, so that
the relative velocity is not invariant: Such a transforma-
tion of the velocities must consequently be rejected. An
essential point in the derivation of the new Lagrangian
density L1 from L0 is that the minimal coupling of the
vector field A and the scalar field φ to ρ and θ, using (10),
does not ensure local gauge invariance for L1, but only
Galilean covariance if the fields behave like in (14). But
this is the only property that is required by physical con-
siderations, so that there is no problem in dropping local
gauge invariance from the theory.

If we insert the expression (22) in the Lagrangian den-
sity (17), the Lagrange equation for ρ is seen to be

∂tθ +
(∇θ)2

2
+ µ = 0. (23)

Applying the gradient operator on this equation, we ob-
tain

∂t∇θ +∇

(
(∇θ)2

2
+ µ

)
= 0, (24)

which is identical to the equation for vs, (4b), if we identify
vs and ∇θ; µ is thus to be identified with the chemical
potential, and is given by

µ = ϕ+ ρ
∂ϕ

∂ρ
+ ρ− 1

−

[
1

2
χ(2− χ) + ρ(1− χ)

∂χ

∂ρ

]
︸ ︷︷ ︸

=(1/2)(∂ρn/∂ρ)

w2, (25)

where we used (20) for the identification of the under-
braced term.

An interesting feature of equation (25) is that it ex-
hibits explicit dependence of the chemical potential µ on
w2; w2 is a Galilean invariant scalar, and it is a thermo-
dynamic variable in a superfluid, because superfluids can
support macroscopic mass flow without entropy flow, that
is in a state of thermodynamic equilibrium. Equation (25),
which here comes from the minimization of L1, could have
been derived from thermodynamic identities also3.

The remaining set of equations is readily obtained if
we express the normal velocity vn in terms of the Clebsch
potentials, just as in Geurst’s [17] variational formulation
of the two-fluid model. The complete Lagrangian density

3 Equation (25) seems to differ from the corresponding one
usually given in textbooks on superfluid hydrodynamics (see
e.g., [10]); the reader is reminded that our thermodynamic vari-
ables are not the usual ones, i.e., T , p and w2 but ρ, S and
w2.

of our model then reads

L2(ρ, S, θ, vn, α, β, γ) = ρ∂tθ +
ρ2

2
+ ρϕ(ρ, S)

− ρ+
ρ

2
(1− χ)2(∇θ)2 + ρχ(2− χ)vn · ∇θ

+
ρ

2
χ(χ− 2)v2

n + α [∂tS +∇ · (Svn)]

+ γ [∂t(βS) +∇ · (βSvn)] , (26)

where it is recalled that χ = χ(ρ, S). For convenience,
and further comparison with the calculations of the next
section, we give also the expression of L2 as a function of
the densities, using (20):

L2(ρ, ρn, ρs, θ, vn, α, β, γ) = ρ∂tθ +
ρ2

2
+ ρϕ

− ρ+
ρs

2
(∇θ)2 + ρnvn · ∇θ −

ρn

2
v2

n

+ α [∂tS +∇ · (Svn)] + γ [∂t(βS) +∇ · (βSvn)] . (27)

Two of the Lagrange equations derived from (26, 21,
23), have already been written; the remaining set is:

(δβ) ∂tγ + vn · ∇γ = 0, (28a)

(δvn)
ρn

S
w = − (∇α+ β∇γ) , (28b)

(δS) ∂tα+ β∂tγ + vn · (∇α+ β∇γ)

+ ρ(1− χ)
∂χ

∂S
w2 − ρ

∂ϕ

∂S
= 0, (28c)

(δα) ∂tS +∇ · Svn = 0, (28d)

(δγ) ∂tβ + vn · ∇β = 0. (28e)

Two of the Clebsch potentials, α and γ, appear as La-
grange multipliers. The constraint related to α gives the
conservation of entropy, (28d), and the constraint related
to γ the conservation of normal fluid vorticity4, (28a, 28e).
However, we already know that, by definition, the super-
flow carries no entropy, hence that the normal fluid only
is responsible for the entropy transport, as (28d) shows;
the G-P equation also prescribes that the normal fluid
vorticity must move with the normal fluid owing to the
irrotational nature of the superfluid, in agreement with
(28a, 28e). Thus the two constraints needed to introduce
the Clebsch potentials actually represent no supplemen-
tary assumptions.

Equation (28b), which gives the relative velocity w in
terms of the Clebsch potentials α, β and γ, has been ob-
tained in the same form by Geurst [17]. This is not very
surprising for two reasons. The first one is, of course, that
we use the same parametrization for the normal fluid ve-
locity. The second traces back to the fact that his theory
is a generalization of the Lagrangian formulation of the ir-
rotational ideal fluid hydrodynamics in Eulerian represen-
tation; on the other hand, NLS is a good parametrization
of the Euler equation (discarding the terms with the high-
est derivatives, see (2, 3)), so that the Lagrangian density

4 Not to be confused with the so-called quantum vortices,
which may exist if the phase of the wavefunction is multivalued.
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(8) is also a variational formulation of ideal fluid hydrody-
namics. However, the conservation of mass is introduced
by Geurst as a constraint equation, with the help of a La-
grange multiplier that is identified with the potential of
the superfluid velocity; in the G-P theory, the mass con-
servation and the identification of the superfluid velocity
potential are both direct consequences of the model, a fea-
ture that is preserved in our generalization.

The system (28) is complete and thus sufficient to de-
rive the two-fluid equations; it is nevertheless quicker to
obtain the conservation of momentum and energy, and
thus the expression of the relevant thermodynamic func-
tions, from the stress energy tensor

Tστ =
∂L2

∂(∂τηλ)
∂σηλ −L2δστ , (29)

where η = (ρ, θ, vin, S, α, β, γ) is the set of fields in L2,
indexed by λ in (29), and ∂σ = (∂0, ∂i) = (∂t,∇i) (not a
4-vector!). The components of the tensor Tστ satisfy the
conservation laws

∂t(Tσ0) +∇i(Tσi) = 0, (30)

where σ runs from 0 to 4.
A straightforward calculation gives the energy density

−T00 = E

=
1

2
ρv2

s + ρnvs · w + ρnw
2 + µρ− p+ TS +∇ ·C, (31)

where C is the vector (α+ βγ)Svn. The divergence term
∇·C and a corresponding term in −T0i, −∂tCi, cancel out
each other when put in the energy conservation law given
by (30), so that they just reflect the degree of arbitrariness
in the definition of Tστ . In (31) we also defined

−p+ TS ≡ −
ρ2

2
− ρ2 ∂ϕ

∂ρ
+ ρ2(1− χ)

(
∂χ

∂ρ

)
w2. (32)

With this definition, considering (7b, 6b), we see that
−T00 (apart from the spurious divergence term) is indeed
identical with the energy density E. The energy current
density is

−T0i = Qi

=

(
µ+

1

2
v2

s

)
Ji + TSvin + ρnv

i
n(v2

n − vn · vs)− ∂tCi, (33)

if we define

T = ρ
∂ϕ

∂S
− ρ(1− χ)

∂χ

∂S
w2. (34)

The dependence of this thermodynamic function on w is
the same as that of the temperature, given by general ther-
modynamic requirements, which proves the consistency of
this definition. When we insert (31, 33) in (30), setting
σ = 0, we recover the conservation of energy for the two-
fluid model (6a, b, c).

The momentum density is

Ti0 = Ji

= ρsv
i
s + ρnv

i
n +∇iD, (35)

where D is the scalar (α+ βγ)S. When the conservation
of momentum is expressed using (30), the gradient term
and a corresponding term in Tij cancel out each other;
indeed Tij reads

Tij = Πij

= ρnv
i
nv
j
n + ρsv

i
sv
j
s + (p− ∂tD)δij , (36)

where we define

p =
ρ2

2
+ ρ2 ∂ϕ

∂ρ
+ ρS

∂ϕ

∂S

− ρ(1− χ)

(
S
∂χ

∂S
+ ρ

∂χ

∂ρ

)
w2. (37)

This definition is consistent with equations (32, 34), and
with the dependence of the pressure on w as required
by general thermodynamic identities. Thus the thermo-
dynamic functions that we introduced, with µ identified
with the chemical potential, T with the temperature and
p with the pressure, are fully consistent with the physi-
cal requirements of thermodynamics concerning their re-
spective dependence on w2. It reflects the fact that the
Lagangian density (26) is fully covariant with respect to
Galilean transforms. Inserting (35, 36) in (30), one recov-
ers the conservation of momentum of the two-fluid model,
(4d, 5). The set of equations (21, 24, 31, 33, 35, 36) defi-
nitions of thermodynamic quantities (25, 34, 37), are thus
the equations of the two-fluid model, with the normal and
superfluid density given by (20). As we said at the begin-
ning of this section, the functions χ(ρ, S) and ϕ(ρ, S) are
not specified in our theory; they have to be deduced from
a microscopic theory, or from experimental data.

4 Derivation of the Hills-Roberts model

The irrotational nature of the superfluid velocity leads to
a paradox, most clearly stated in the review by Ginzburg
and Sobaynin [18]; let us recall briefly their argument.
As in any perfect fluid, the component of vs parallel to a
wall need not vanishes; on the other hand, helium atoms
stick to the wall, so that the flux of superfluid5 do vanish:
(ρsvs)|wall = 0. So it seems that a discontinuity in vs may
be possible; but this should lead to the appearance of a
measurable surface energy at vs 6= 0, which is not observed
in experiments. A possible way out this contradiction is to
assume that ρs|wall = 0. The NHT of the Gross-Pitaevskii
model allows the fulfilement of this boundary condition.
In the context of the two-fluid model, terms depending on
the gradients of the superfluid density have to be added

5 The flux of normal fluid, (ρnvn)|wall, vanishes because
vn|wall = 0 as for any other viscous fluid.
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to the equations. This is done in the Hills-Roberts model
[13]. In this model, equation (4b) is replaced by

∂tvs +∇

(
v2

s

2
+ µ

)
=

= ∇

(
η(ρs)∇

2ρs +
1

2

dη

dρs
(∇ρs)

2

)
, (38)

where η(ρs) is an unspecified function; the stress tensor
have to be modified also, and reads now

Πij ≡ ρnv
i
nv
j
n + ρsv

i
sv
j
s + η∇iρs∇jρs

+

(
p− ηρs∇

2ρs −
1

2

d(ρsη)

dρs
(∇ρs)

2

)
δij , (39)

in contrast with its last expression (5b). The new terms,
involving the spatial derivatives of ρs, are responsible for
the existence of a healing length near a wall: this is the
typical distance over which the superfluid density evolves
from 0 to its value in the bulk of the fluid. The two-fluid
equations cannot account for this phenomenon, which is
essentially of non-hydrodynamical nature.

In the zero temperature limit, the Hills-Roberts and
G-P model are strictly identical, with η(ρs) = 1/(4ρs). To
generalize the G-P model, and obtain the Hills-Roberts
equations, we proceed with the same spirit as before, using
the minimal coupling technique, and imposing Galilean
invariance at all stages of the calculations. As we will see,
although the details of the derivation seem quite different,
the final result is very similar to what we got in the last
section.

The natural thermodynamic variables, in the Hills-
Roberts equations, are the superfluid density ρs and the
entropy per unit volume S. We thus make a different
change of variables, setting Ψ =

√
ρse

iθ, and get the fol-
lowing expression for the NLS Lagrangian density:

L̃0(ρs, θ) = ρs∂tθ +
ρ2

s

2
− ρs +

ρs

2
(∇θ)2 +

(∇ρs)
2

8ρs
. (40)

For the sake of clarity, the quantities similar to the ones
of the previous section, but with a different interpretation,
will be affected hereafter with a tilde: .̃ We now introduce
the vector and scalar potentials as follow:

Ã = χ̃(∇θ − vn),

φ̃ = χ1∂tθ + χ2(∇θ)2 + χ3∇θ · vn + χ4v
2
n + ϕ̃, (41)

where all the unknown functions, χ̃, ϕ̃ and the four χi
are supposed to depend on the thermodynamic variables

ρs and S. The structure of φ̃ is the most general one,
quadratic in the velocities.

The next step is to insert the expressions (41) in the
original Lagrangian with the minimal coupling assump-

tion, like in (16). The variational equation for θ reads

∂tρs + ∂t

(
ρs

∂φ̃

∂(∂tθ)

)

+∇ ·

[
ρs(1− χ̃)2∇θ + ρsχ̃(1− χ̃)vn + ρs

∂φ̃

∂(∇θ)

]
= 0;

(42)

it must be identified with the equation of mass conserva-
tion (4a), which gives the following set of conditions

ρn ≡ ρsχ1(ρs, S), (43a)

(1− χ̃)2 + 2χ2 = 1, (43b)

χ̃(1− χ̃) + χ3 = χ1. (43c)

Another set of conditions comes from the requirement of

Galilean invariance of the theory, which means that Ã and

φ̃ must obey the transformation law (14). Equating the
coefficients of the terms in ∇θV , V vn and V 2, we obtain
another set of conditions,

−χ1 + 2χ2 + χ3 = −χ̃, (44a)

χ3 + 2χ4 = χ̃, (44b)

χ2 + χ3 + χ4 =
1

2
χ1. (44c)

The last equation, (44c), is not independent, being the
sum of the two others. Using (43b, 43c), we get

−χ1 + 2χ2 + χ3 = χ̃, (45)

which together with (44a) gives

χ̃ = 0 =⇒ Ã = 0, (46)

so that there is no vector potential anymore. This dif-
ference with the derivation of the last section is purely
formal, in a sense, as we will see below. Using (46), we
finally deduce

χ2 = 0,

χ3 = χ1,

χ4 = −
1

2
χ1. (47)

As in the previous case, the model is completely described
by the scalar functions χ1(ρs, S) and ϕ̃(ρs, S), and the
vector function vn.

With those results, we may calculate the variational
equation for ρs. It reads

∂t∇θ +∇

(
(∇θ)2

2
+ µ̃

)
=

= ∇ ·

[(
∂ρs

∂ρ

)
S

(
∇2ρs

4ρs
−

(∇ρs)
2

8ρ2
s

)]
. (48)

At very low temperature, the derivative (∂ρs/∂ρ)S is al-
most equal to 1, so that with this equation we recover



252 The European Physical Journal B

the Hills-Roberts model (38), with η(ρs) = 1/4ρs. The
new chemical potential, µ̃, is given by

µ̃ =

(
∂ρs

∂ρ

)
S

(
ρs − 1 +

∂(ρsϕ̃)

∂ρs

)
−

1

2

∂ρn

∂ρ
w2, (49)

and it exhibits the correct explicit dependence on w2 (see
(25)).

In order to get the other equations of the model, we
use the Clebsch potentials as before. The complete La-

grangian density, using the expression of L̃0 given in (40),
the minimal coupling with the potentials given by (41),
and equations (43a, 47), now reads

L̃2(ρ, ρn, ρs, θ, vn, α, β, γ) = ρ∂tθ +
ρ2

s

2

+ ρsϕ̃− ρs +
ρs

2
(∇θ)2 + ρnvn · ∇θ −

ρn

2
v2

n

+ α [∂tS +∇ · (Svn)] + γ [∂t(βS)

+ ∇ · (βSvn)] +
∇2ρs

8ρs
· (50)

Apart from the very last term accounting for the heal-
ing phenomenon, this expression is extremely similar to
the corresponding one in the last section, (27). In this
section, there is no vector potential, as shown by (46),
so that the calculations may seem very different from the
previous ones; but the final result, (50), is essentially the
same.

Consequently, only one Lagrange equation is modified.
The variationnal equation for the entropy density, previ-
ously given by (28c), now reads

(δS) ∂tα+ β∂tγ + vn · (∇α+ β∇γ)

−
∂ρn

∂S

(
∂tθ + vn · ∇θ −

v2
n

2

)
− ρs

∂ϕ̃

∂S
= 0. (51)

The remaining calculations proceed just as in the previous

section. The new expression for the stress tensor Π̃ij reads

Π̃ij = ρnv
i
nv
j
n + ρsv

i
sv
j
s +

1

4ρs
∇iρs∇jρs

+

[
p̃− ρ

∂ρs

∂ρ

(
∇2ρs

4ρs
−

(∇ρs)
2

4ρ2
s

)
−

(∇ρs)
2

8ρs

]
δij , (52)

where the pressure p̃ is given by

p̃ = T̃ S + ρ2 ∂

∂ρ

(
ρ2

s/2− ρs + ρsϕ̃

ρ

)
−
ρ2

2

∂

∂ρ

(
ρn

ρ

)
w2, (53)

and the temperature T̃ by

T̃ =

(
∂ρs

∂S

)
ρ

(
ρs − 1 +

∂(ρsϕ̃)

∂ρs
−
w2

2

)
+
∂(ρsϕ̃)

∂S
· (54)

The term depending on the superfluid density gradient
in (52) is almost the same as in the Hills-Roberts model
(39). We insist that our calculations are supposed to be
valid at very low temperature, where ρs ≈ ρ ≈ ρ(∂ρs/∂ρ).
We have thus obtained from the G-P equation, in a con-
sistent way, the equations of the Hills-Roberts model of
superfluidity.

5 Summary and conclusions

The Gross-Pitaevski model describes the superfluidity of
the weakly interacting Bose gas. More precisely, it gives
the behavior of the wave function of the condensate, which
is the part of the fluid that undergoes Bose condensation,
and neglects the other part of the fluid, the depletion. Al-
though approximate, this theory involves no phenomenol-
ogy, but is valid at zero temperature only. It accounts for
both superfluid behavior in the bulk of the fluid, and heal-
ing when the fluid is in contact with a solid wall.

At low, but non zero temperature, helium II is in a
superfluid phase. The behavior of this superfluid liquid,
with rather strong interatomic interactions, is very much
the same as the one of a mixture of a normal viscous fluid
and an irrotational ideal fluid. This is the basis of the
phenomenological two-fluid model of superfluidity. In this
model, gradients of the superfluid density do not inter-
vene, so that the healing phenomenon is not taken into ac-
count. This task is undertaken by the Hills-Roberts theory,
which add to the two-fluid equations terms that depend
on the superfluid density gradient. At zero temperature,
the Hills-Roberts and G-P models are identical, and their
hydrodynamic limit is the two-fluid model.

In this paper, we show that it is possible to add the
degrees of freedom that correspond to the normal fluid,
starting from the Lagrangian of the G-P model. We pro-
ceed in a systematic way, ensuring Galilean covariance at
all stages of the calculation. In the hydrodynamic limit, we
get the equations of the two-fluid model, with consistent
definitions for all the relevant thermodynamic functions
of the fluid. When the derivatives of the superfluid den-
sity are no more negligible, a similar method lead to the
equations of the Hills-Roberts theory. The details of the
calculations are somewhat different, but the final result is
essentially the same, apart from the new terms depending
on the superfluid density gradient. Our hope is that such
calculations may be useful for a more systematic deriva-
tion of the two-fluid or Hills-Roberts theory, in which the
G-P equation should be the first order of a perturbative
approach in power of the depletion.

I am grateful to Pr. S. Fauve for constant interest and encour-
agement during the completion of this work.
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